

 (In Canada)
111 Railside Road
Suite 201
Toronto, ON M3A 1B2
CANADA
Tel: 1-416-840 4991

(In US)
1241 Quarry Lane
Suite 105
Pleasanton, CA 94566
USA
Tel: 1-925-218 1885

Simply Brighter Fax: 1-416-840 6541 Email: sales@mightex.com

Sirius™ SLC-XXXX-S/U

Mightex Sirius™ Multi-Channel LED
Controller SDK Description

Version: 1.1.4

Oct.12, 2018

Relevant Products
Part Numbers

SLC-AA02-U, SLC-AA04-U,SLC-AA02-S,SLC-AA04-S,
SLC-AV02-U, SLC-AV04-U,SLC-AV02-S,SLC-AV04-S,
SLC-SA02-U, SLC-SA04-U,SLC-SA02-S,SLC-SA04-S,
SLC-SV02-U, SLC-SV04-U,SLC-SA02-S,SLC-SV04-S,

 SLC-MA01-U,SLC-MA02-U,SLC-MA12-U,SLC-MA16-U,
 SLC-MA12-S,SLC-MA16-S,SLC-CA01-U,SLC-CA02-
 U,SLC-CA12-U,SLC-CA16-U,SLC-CA12-S,SLC-CA16-
 S, SLC-MA04-MU, SLC-CA04-MU, SLC-FA02-U, SLC-
 FA04-U, SLC-FV02-U, SLC-FV04-U,
 SLC-FA02-S, SLC-FA04-S, SLC-FV02-S, SLC-FV04-S
 SLC-XA02-U, SLC-XA04-U, SLC-XV02-U, SLC-XV04-U
 SLC-XA02-S, SLC-XA04-S, SLC-XV02-S, SLC-XV04-S
 SLC-HA02-S, SLC-HA02-U, SLC-HV02-S, SLC-HV02-U
 SLC-QA02-S, SLC-QA02-U, SLC-QA04-S,SLC-QA04-U

Revision History

Revision Date Author Description

1.0.0 Nov. 18, 2007 JT Zheng Initial Revision

1.1.0 Apr. 18, 2009 JT Zheng LabView supporting

 1.1.1 Nov. 12, 2010 JT Zheng More return value description

1.1.2 Nov. 16, 2011 JT Zheng Adding SLC-MA04/CA04-MU modules

1.1.3 Jun. 19, 2012 JT Zheng Clarify Strobe RepeatCnt definition

1.1.4 Oct. 12, 2018 JT Zheng New Logo

Mightex Sirius™ Multi-Channel LED Controller was designed to drive various kinds of LEDs on current market,
including Mightex Sirius™ Light Sources, as well as LEDs from other vendors. Windows based PC software is
provided for user to control the channel operation easily. External trigger is provided for each channel, allowing real
time applications, such as machine vision application, are easily applied.

IMPORTANT:

The SDK is for Sirius USB LED Controller (SLC-XXXX-U) only, for RS232 module, it’s recommended to use RS232
command sets for customer application development. Some APIs are only for certain modules, please refer to User
manual for detailed features of modules. For example, the “MA/CA” module (SLC-MAxx-U/S or SLC-CAxx-U/S)
doesn’t have “Trigger mode”, so all the related APIs should not be invoked on this module, and for some modules, the
steps in Strobe/Trigger mode are only limited to 2, while others allow 128 steps.

SDK FILES:

The SDK includes the following files:

\LIB directory:
 Mightex_LEDDriver_SDK.h --- Header files for all data prototypes and dll export functions.
 Mightex_LEDDriver_SDK.dll --- DLL file exports functions.
 Mightex_LEDDriver_SDK.lib --- Import lib file, user may use it for VC++ development.
 Hiddll.dll --- DLL file used by “Mightex_LEDDriver_SDK.dll” .

\Documents directory:
 MighTex Sirius Multi-Channel LED Controller SDK Description.pdf

\Examples directory
 \Delphi --- Delphi 5.0 project example.
 \VC++ --- VC++ 6.0 project example.
 \VB_Application – VB6.0 project example, note that for VB application, user MUST use the
“Mightex_LEDDriver_SDK_Stdcall.dll”, which is included in this directory.

Note that these examples are for demonstration of the DLL functions only, device fault situations are not handled in
these examples, user should handle them properly.

HEADER FILE:

The “Mightex_LEDDriver_SDK.h” is as following:

typedef int SDK_RETURN_CODE;

#ifdef SDK_EXPORTS
#define SDK_API extern "C" __declspec(dllexport) SDK_RETURN_CODE _cdecl
#else
#define SDK_API extern "C" __declspec(dllimport) SDK_RETURN_CODE _cdecl
#endif

#define MAX_PROFILE_ITEM 128 // For SX Modules, it’s 3 instead of 128.

#defineDISABLE_MODE 0
#define NORMAL_MODE 1
#define STROBE_MODE 2
#define TRIGGER_MODE 3

#define MODULE_AA 0
#define MODULE_AV 1
#define MODULE_SA 2
#define MODULE_SV 3
#define MODULE_MA 4
#define MODULE_CA 5
#define MODULE_HA 6
#define MODULE_HV 7
#define MODULE_FA 8
#define MODULE_FV 9
#define MODULE_XA 10
#define MODULE_XV 11
#define MODULE_QA 12

#pragma pack(1)
typedef struct {
 // Normal Mode Parameters
 int Normal_CurrentMax;
 int Normal_CurrentSe;

 // Strobe Mode Parameters
 int Strobe_CurrentMax;
 int Strobe_RepeatCnt;
 int Strobe_Profile[MAX_PROFILE_ITEM][2];

// Trigger Mode Parameters
 int Trigger_CurrentMax;
 int Trigger_Polarity;
 int Trigger_Profile[MAX_PROFILE_ITEM][2];
} TLedChannelData;
#pragma pack()

// Export functions:
SDK_API MTUSB_LEDDriverInitDevices(void);
SDK_API MTUSB_LEDDriverOpenDevice(int DeviceIndex);
SDK_API MTUSB_LEDDriverCloseDevice(int DevHandle);
SDK_API MTUSB_LEDDriverSerialNumber(int DevHandle, char *SerNumber, int Size);
SDK_API MTUSB_LEDDriverDeviceChannels(int DevHandle);
SDK_API MTUSB_LEDDriverSetMode(int DevHandle, int Channel, int Mode);
SDK_API MTUSB_LEDDriverSetNormalPara(int DevHandle, int Channel,TLedChannelData *LedChannelDataPtr) ;
SDK_API MTUSB_LEDDriverSetNormalCurrent(int DevHandle, int Channel, int Current);
SDK_API MTUSB_LEDDriverSetStrobePara(int DevHandle, int Channel, TLedChannelData *LedChannelDataPtr);
SDK_API MTUSB_LEDDriverSetTriggerPara(int DevHandle, int Channel,TLedChannelData *LedChannelDataPtr);
SDK_API MTUSB_LEDDriverResetDevice(int DevHandle);
SDK_API MTUSB_LEDDriverStorePara(int DevHandle);
SDK_API MTUSB_LEDDriverRestoreDefault(int DevHandle);
SDK_API MTUSB_LEDDriverGetLoadVoltage(int DevHandle, int Channel);
SDK_API MTUSB_LEDDriverGetCurrentPara(int DevHandle, int Channel,TLedChannelData
 *LedChannelDataPtr,int *Mode);
SDK_API MTUSB_LEDDriverSendCommand(int Dev Handle, char* Command);

Basically, only ONE data structure TledChannelData is needed for mode (NORMAL, STROBE and TRIGGER)
parameter setting, note that “#pragma (1)” should be used (as above) for the definition of this structure.
Note: For AA/AV/SA/SV/HA/HV/MA/CA modules, the resolution of current is 1mA, thus in the API of setting
current, 100 means 100mA, however, for FA/FV/XA/XV modules, the resolution of the current is 0.1mA, setting of
100 actually means 10.0mA.

EXPORT Functions:

SDK_API MTUSB_LEDDriverInitDevices(void);

Parameter: None
Return: it returns the number of SLC series LED drivers currently connected to PC, while there’s no device connected,
it’s ZERO.
Note: User should always invoke this function before calling any other functions.

SDK_API MTUSB_LEDDriverOpenDevice(int DeviceIndex);

Parameter: DeviceIndex – the index from 0 – (TotalDevices–1), here TotalDevices is the value returned by the function
of MTUSB_LEDDriverInitDevices(void).
Return: it returns HANDLE of this device, the HANDLE can be used as first parameter of all other APIs to operate this
device.
 -1 means Device open failed, this might be caused by device error.
Note: User should always open the device before doing all device related operations, note that ZERO is also a valid
value for handle.

SDK_API MTUSB_LEDDriverCloseDevice(int DevHandle);

Parameters: DevHandle – The device handle returned by MTUSB_LEDDriverOpenDevice().
Return: it returns –1 means this function call failed, otherwise device is closed correctly.
Note: User should close any opened devices, while finishing operation of the device.

SDK_API MTUSB_LEDDriverSerialNumber(int DevHandle, char *SerNumber, int Size);

Parameters:
 DevHandle – The device handle returned by MTUSB_LEDDriverOpenDevice().
 SerNumber – The pointer to char buffer which will filled with module serial number.
 Size – The Size of the SerNumber buffer, the buffer should at least holds 16 characters.
Return: it returns –1 means this function call failed,

otherwise the call is successful.

SDK_API MTUSB_LEDDriverDeviceChannels(int DevHandle);

Parameters:
 DevHandle – The device handle returned by MTUSB_LEDDriverOpenDevice().
Return: it returns –1 means this function call failed,

otherwise the return value is the channel number of this device.

SDK_API MTUSB_LEDDriverDeviceModuleType(int DevHandle);

Parameters:
 DevHandle – The device handle returned by MTUSB_LEDDriverOpenDevice().
Return: it returns –1 means this function call failed,

otherwise the return value is the Module type which is defined in the header file:
MODULE_AA 0
MODULE_AV 1
MODULE_SA 2
MODULE_SV 3
MODULE_MA 4
MODULE_CA 5
…
please refer to the header file for all the modules supported by the SDK.

Note: User should always get the Module type, and invokes following APIs accordingly, for example, the “MA”
Module doesn’t support all Trigger Mode operations.

SDK_API MTUSB_LEDDriverSetMode(int DevHandle, int Channel, int Mode);

Parameters:
 DevHandle – The device handle returned by MTUSB_LEDDriverOpenDevice().
 Channel – The channel number of the channel user wants to operate, it’s ONE based.
 Mode – The setting mode:
 0 --- DISABLE
 1 --- NORMAL
 2 --- STROBE
 3 --- TRIGGER
Return: it returns –1 means this function call fails because user uses an invalid handle.

returns 1 means device error occurred during the API invoking,
otherwise the call is successful.

Important: For SLC-MA04/CA04-MU module, user should send “ECHOOFF” command with the
API of “MTUSB_LEDDriverSendCommand(int Dev Handle, char* Command) “ to put the module in to “PC
Mode” before it sends any control command to LED Driver. Please refer the LED Driver User Manual for the
SLC-MA04/CA04-MU control.

SDK_API MTUSB_LEDDriverSetNormalPara(int DevHandle, int Channel,TLedChannelData
*LedChannelDataPtr) ;

Parameters:
 DevHandle – The device handle returned by MTUSB_LEDDriverOpenDevice().
 Channel – The channel number of the channel user wants to operate, it’s ONE based.
 LedChannelDataPtr – The pointer to variable of TledChannelData structure, the setting parameters should be first
filled in this variable.
Return: it returns –1 means this function call fails because user uses an invalid handle.

returns 1 means device error occurred during the API invoking,
otherwise the call is successful.

SDK_API MTUSB_LEDDriverSetNormalCurrent(int DevHandle, int Channel, int Current);

Parameters:
 DevHandle – The device handle returned by MTUSB_LEDDriverOpenDevice().
 Channel – The channel number of the channel user wants to operate, it’s ONE based, that is, ONE means the first
channel of the device.
 Current – The setting current of this channel.
Return: it returns –1 means this function call fails because user uses an invalid handle.

returns 1 means device error occurred during the API invoking,
otherwise the call is successful.

SDK_API MTUSB_LEDDriverSetStrobePara(int DevHandle, int Channel, TLedChannelData
*LedChannelDataPtr);

Parameters:
 DevHandle – The device handle returned by MTUSB_LEDDriverOpenDevice().
 Channel – The channel number of the channel user wants to operate, it’s ONE based.
 LedChannelDataPtr – The pointer to variable of TledChannelData structure, the setting parameters should be first
filled in this variable.
Return: it returns –1 means this function call fails because user uses an invalid handle.

returns 1 means device error occurred during the API invoking,
otherwise the call is successful.

SDK_API MTUSB_LEDDriverSetTriggerPara(int DevHandle, int Channel,TLedChannelData
*LedChannelDataPtr);

Parameters:
 DevHandle – The device handle returned by MTUSB_LEDDriverOpenDevice().

 Channel – The channel number of the channel user wants to operate, it’s ONE based.
 LedChannelDataPtr – The pointer to variable of TledChannelData structure, the setting parameters should be first
filled in this variable.
Return: it returns –1 means this function call fails because user uses an invalid handle.

returns 1 means device error occurred during the API invoking,
otherwise the call is successful.

SDK_API MTUSB_LEDDriverResetDevice(int DevHandle);

Parameters:
 DevHandle – The device handle returned by MTUSB_LEDDriverOpenDevice().
Return: it returns –1 means this function call failed, otherwise the call is successful.
Note: it returns –1 means this function call fails because user uses an invalid handle.

returns 1 means device error occurred during the API invoking,
otherwise the call is successful.

SDK_API MTUSB_LEDDriverStorePara(int DevHandle);

Parameters:
 DevHandle – The device handle returned by MTUSB_LEDDriverOpenDevice().
Return: it returns –1 means this function call failed, otherwise the call is successful.
Note: it returns –1 means this function call fails because user uses an invalid handle.

returns 1 means device error occurred during the API invoking,
otherwise the call is successful.

SDK_API MTUSB_LEDDriverRestoreDefault(int DevHandle);

Parameters:
 DevHandle – The device handle returned by MTUSB_LEDDriverOpenDevice().
Return: it returns –1 means this function call failed, otherwise the call is successful.
Note: it returns –1 means this function call fails because user uses an invalid handle.

returns 1 means device error occurred during the API invoking,
otherwise the call is successful.

SDK_API MTUSB_LEDDriverGetLoadVoltage(int DevHandle, int Channel);

Parameters:

DevHandle – The device handle returned by MTUSB_LEDDriverOpenDevice().
Channel – The channel will be read

Return: it returns –1 means this function call failed,
 otherwise the call is successful. The returned voltage is in “mv”.

SDK_API MTUSB_LEDDriverGetCurrentPara(int DevHandle, int Channel,TLedChannelData
 *LedChannelDataPtr,int *Mode);

Parameters:

DevHandle – The device handle returned by MTUSB_LEDDriverOpenDevice().
Channel – The channel will be read

 LedChannelDataPtr – Reference of variable of TledChannelData type, caller should assign such a variable, while
 this function will fill it with the current parameters of the driver.
 Mode – Reference of variable of “integer” which contains the current mode of the channel.
Return: it returns –1 means this function call fails because user uses an invalid handle.

returns 1 means device error occurred during the API invoking,
 otherwise the call is successful

SDK_API MTUSB_LEDDriverSendCommand(int Dev Handle, char* Command);

Parameters:

DevHandle – The device handle returned by MTUSB_LEDDriverOpenDevice().
Command – The ASCII String, please refer to RS232 command set for the command strings.

Return: it returns –1 means this function call fails because user uses an invalid handle.
returns 1 means device error occurred during the API invoking,
otherwise the call is successful.

Note: Although the SDK is for USB module only, it’s allowed to input ASCII string command via this function call,
the command set is completely the same as the RS232 command set.
Example:
MTUSB_LEDDriverSendCommand(handle, “NORMAL 1 100 10”);
This function call will set the Normal Mode parameter of Channel 1 of the module to Imax = 100mA, Iset = 10mA.

Command Sets:

Important understanding:

It’s important to understand that the Device has 4 working modes : DISABLE, NORMAL,
STROBE and TRIGGER, each mode has a set of parameters (except the DISABLE mode), such as Imax,
Iset…etc., user can set those parameters at any time, no matter the parameters of the mode is the current
working mode or not. If the current working mode is NOT the mode of the parameters you’re setting,
You won’t see the physical output change on channel output until the mode is set to be current working
mode. The setting parameters are stored in device’s internal memory, but not Non-Volatile memory yet,
So after power cycle, the settings will be lost, device will reset all settings to factory default, or the last
“STORE” parameters, If user wants to store all current settings (including all parameters of all modes of
all channels) to Non-Volatile memory, user can use “STORE” command (refer to command set details) to
do that.

For a factory delivery device, it’s in DISABLE mode as default, and the parameters for each
mode are as following:

Mode Imax (mA) Iset (Profile)
DISABLE* - -
NORMAL 20 10
STROBE 20 0/0 (No points)
TRIGGER 20 0/0 (No points)

* For complete details about the operation modes and the parameters, please refer to the user manual.

For device with USB interface, user can send the command (ASCII string) to device by invoking the
API “MTUSB_LEDDriverSendCommand()”, user should do InitDevice and OpenDevice properly
prior to invoking this Send command API.

For device with RS232 interface, user can send the command (ASCII string) to the UART port
There’s no need to invoke any SDK APIs. Actually the above APIs are for USB device only.
The hardware setting of the RS232 port is as following:

The device has 3 lines RS232 serial port as following:
It has a DB9 Female connector which has the following definition:

 Pin2 ---- TXD
 Pin3 ---- RXD
 Pin5 ---- GND
With a Male To Female straight line cable (Note, do NOT use null modem cable), user can
connect it to a standard PC DB9 COM port.

 Baud rate is set to 9600 bps, the parameter is 9600, N, 8, 1 (No hardware flow control)

For RS232 device, it’s recommended for user to use the commands via Hyper-terminal to
communicate/test with the device before using these command sets to develop user own application.

Command Set Format:

We use “Command Set” as our software interface to control the device, each command is actually
an ASCII string which is ended with <LF> <CR> (Hex Code: 0A, 0D). This enables us to use standard
PC Hyper Terminal to control the Device. Device can work as an echo server (controlled by Echo On/Off
command) with “EchoOn” command, In this case, it will each back each ASCII character it receives.

Echo Mode

 “EchoOn” Mode is mainly for Debug/Service purpose, which allows user to use tools like Hyper
terminal, In this mode, Device will echo back each character is received(except for “Back Space”), and It
will send back an additional “>” as Prompt when it got <CR>.
 “EchoOff” Mode is mainly for Host Software control purpose, it won’t echo back any characters it
receives. It’s the Default mode after restart of the device (include Soft and Hard restart).

Examples:
“EchoOn” mode:
Host Send: NORMAL 1 1000 500<LF><CR>
Device Send back:

NORMAL 1 1000 500<LF><CR> // This is Echo back of receiving characters
>##<LF><CR> // Response
> // An Additional Prompt.

“EchoOff” mode:
Host Send: NORMAL 1 1000 500<LF><CR>
Device Send back: ##<LF><CR>

Command Structure

All Commands are in the following format:
 Command DATA1 DATA2 … DATAn<LF><CR>
Note:
 - Command is One or Multiple ASCII Characters (ASCII String).

- DATA1,… DATAn are data fields for command, they’re ASCII characters and separated by
 SPACE. Note that some commands might not have DATA fields. The UNIT of the data is
 specified in each command’s description.
- All the Commands must be ended by <LF> and <CR>

 - Commands are NOT case sensitive.
 - <LF> <CR> are 0x0A and 0x0D in hex, 10 and 13 in decimal.

Response Structure

 In both Echo modes, Device will always return a “Response” to the last input command, the response
has the following format:
 Response<SP> <CR><LF>
Here, Response can be one of the following:
---- [##] The latest command is valid and execution is OK.
#! ---- [#!] The command is valid and executed, but there’s an error occurred during execution.
 Host can use “Error” command to get the Error code.
#? ---- [#?] The latest command is a valid command but the argument is NOT in valid range (e.g.

Channel No. out of range)
#ASCII String ---- [#xxxx] The latest command is valid and execution is OK, Device returns a string
 as a result, please refer to the “Command details” for the contents of string for each command.

ASCII String ---For the command “DEVICEINFO”, the device will return all the device information to
host in a long ASCII string.

When user input an invalid command (command NOT in device’s command set), the device will
return [<SP><SP><SP><SP>xxxx is not defined], here, “xxxx” is the command user input.

Command Set Details:

ECHO MODE COMMAND:

 *. Echo Control
 Format: ECHOON<LF><CR>
 Format: ECHOOFF<LF><CR>
 It sets the Device in “EchoOn” or “EchoOff” Mode, Please note that after a reset, the device is in
“EchoOff” as default.
*. Important: For SLC-MA04/CA04-MU module, when host sends these two commands to module, the
module will enter “PC Mode” in which Host gets full control of the channel outputs.

CURRENT WORKING MODE COMMAND:

 *. Get Current Working Mode
 Format: ?MODE CHLNo<LF><CR>

CHLNo : Channel Number, start from 1, e.g. for a 4 channel device, it can be 1 – 4. (All the
CHLNo in other commands have the same definition)
 Example: ?MODE 1<LF><CR>
 Return: #mode<CR><LF>
 Mode: 0 – DISABLE

1 – NORMAL
 2 – STROBE
 3 – TRIGGER

*. Set Current Working Mode
Format: MODE CHLno mode<LF><CR>

 CHLno: Channel Number.
 Mode: it’s the current mode for this channel:
 0 – DISABLE
 1 – NORMAL
 2 – STROBE
 3 - TRIGGER
 This command sets the channel to the specified mode, for STROBE mode, this command is also
used to start the programmed strobe profile, so when working in STROBE mode, host may use this
command multiple times (re-enter the same mode) to re-start the profile.

NORMAL MODE COMMAND:

 *. Set Normal Mode Parameter
 Format: NORMAL CHLno Imax Iset<LF><CR>
 CHLno: Channel Number
 Imax: The maximum current allowed for NORMAL mode, in mA (or 0.1mA)
 Iset: The working current for NORMAL mode, in mA (or 0.1mA).
 Example: NORMAL 1 1000 500<LF><CR>

 *. Set Normal Mode Working Current
 Format: CURRENT CHLno Iset<LF><CR>
 CHLno: Channel Number
 Iset: The working current for NORMAL Mode, in mA (or 0.1mA).
 Example: CURRENT 1 500<LF><CR>

 *. Get Normal Mode Parameters
 Format: ?CURRENT CHLno<LF><CR>

CHLno: Channel Number.
Return: #Cal1 Cal2 Imax Iset<CR><LF>
Example: ?CURRENT 1<LF><CR>
 #0 0 1000 500<CR><LF>
This command returns the Imax and Iset of Normal mode of the channel, user can ignore the first
2 parameters, which are used for calibration only.

STROBE MODE COMMAND:

 *. Set Strobe Mode Parameters
 Format: STROBE CHLno Imax Repeat<LF><CR>
 CHLno: Channel Number.

Imax: The maximum current for STROBE mode, in mA(or 0.1mA).
Repeat: Repeat Count for running the profile. It can be from 0 to 99999999. And the number 9999
 is special, it means repeat forever. Note that when it’s 0, the programmed wave form will
 output once, when it’s 1, the wave form will be repeated once, which will be output twice
 and so on.

 Example: STROBE 1 1000 5 <LF><CR> /*it will output 6x programmed wave forms */
 Note: Each Channel has a programmable profile for STROBE mode, The profile contains 128 Set
Points, and each set point has Iset/Tset pair, A ZERO/ZERO pair means it’s the end Of the profile. If user
doesn’t program the Profile for a certain channel, the default is All Zero/Zero pairs, which means the
Channel is always OFF. User should use the following “Set Strobe Profile” command to set a customized
profile, and then enter STROBE mode. The profile will be executed (repeatedly) while device enter (or
reenter) the STROBE mode with the “MODE” command. The unit for Iset is in “mA”, for Tset is in “us”.

 *. Set Strobe Profile
 Format: STRP CHLno STPno Iset Tset<LF><CR>
 CHLno: Channel Number.
 STPno: As there might be 128 steps as maximum, user may input step count at STPno. That
implies there might be 128 such commands to construct a 128 pair profile. Note that this STPno is started
from 0, the valid range is 0 – 127.(As we also expect a (0,0) pair to mark the end of a profile, that means
the actual usable pairs are 127)
 Iset, Tset: This is Iset/Tset pair.

Example:
STRP 1 0 500 2000<LF><CR> /* (500mA, 2000uS) */
STRP 1 1 10 100000<LF><CR> /* (10mA, 100000uS) */
STRP 1 2 0 0 <LF><CR> /* (0,0) –End */

 *. Get Strobe Mode Parameters
 Format: ?STROBE CHLno<LF><CF>
 CHLno: Channel Number

Return: #Imax Repeat<CR><LF>
Example:

?STROBE 1<LF><CR>
#1000 5<CR><LF>

 *. Get Strobe Mode Profile Parameters
 Format: ?STRP CHLno<LF><CR>
 CHLno: Channel Number
 Return: #Iset1 Tset1 <CR><LF>

Iset2 Tset2<CR><LF>
……

Example:
 ?STRP 1<LF><CR>

 #500 2000<CR><LF>
 10 100000<CR><LF>
 0 0<CR><LF>

TRIGGER MODE COMMAND:

 *. Set Trigger Mode Parameters
 Format: TRIGGER CHLno Imax Polarity<LF><CR>
 CHLno: Channel Number
 Imax: The maximum current allowed for TRIGGER mode, in mA(or 0.1mA).
 Polarity: polarity of trigger:
 0 - Rising edge of external trigger signal asserts,
 1 - Falling edge of external trigger signal asserts.
 Example: TRIGGER 1 1000 0<LF><CR>
 Note: Each Channel has a programmable profile for TRIGGER mode, The profile contains 128
Set Points, and each set point has Iset/Tset pair, A ZERO/ZERO pair means it’s the end Of the profile. If
user doesn’t program the Profile for a certain channel, the default is All Zero/Zero pair, which means the
Channel is always OFF. User should use the following “Set Strobe Profile” command to set a customized
profile, and then enter TRIGGER mode. The profile will be executed while an external trigger occurs and
the device is in TRIGGER mode. The Unit for Iset is in “mA”, for Tset is in “us”.

 *. Set Trigger Profile
 Format: TRIGP CHLno STPno Iset Tset<LF><CR>
 CHLno: Channel Number.
 STPno: As there might be 128 steps as maximum, user may input step count at STPno. That
implies there might be 128 such commands to construct a 128 pair profile. Note that this STPno is started
from 0, the valid range is 0 – 127.
 Iset, Tset: Current/Time pair.
 Example:

TRIGP 1 0 500 2000<LF><CR> /* (500mA, 2000uS) */
TRIGP 1 1 10 100000<LF><CR> /* (10mA, 100000uS) */
TRIGP 1 2 0 0 <LF><CR> /* (0,0) –End */

 *. Get Trigger Mode Parameters
 Format: ?TRIGGER CHLno<LF><CR>
 CHLno: Channel Number

Return: #Imax Polarity<LF><CR>
Example:

?TRIGGER 1<CR><LF>
 #1000 0<CR><LF>

 *. Get Trigger Profile
 Format: ?TRIGP CHLno<LF><CR>
 CHLno: Channel Number.
 Return: #Iset1 Tset1 <CR><LF>

Iset2 Tset2<CR><LF>
……

 Example: ?TRIGP 1<LF><CR>
 #500 2000<CR><LF>

 10 100000<CR><LF>
 0 0<CR><LF>

OTHER COMMAND:

*. Get Channel Load Voltage
 Format: LoadVoltage CHLno<LF><CR>
 CHLno: Channel Number (1 – 4).
 For XV Module (e.g. AV04 or SV04), Host uses this command to get the current voltage on the
load of the specified channel, it will return:
 #CHLno:vvvvv<CR><LF>
Here, vvvvv is the voltage in “mv”.
Note: As the controller polls the load voltage in a 20ms interval, this feature is proper for NORMAL mode
or slow Strobe mode only.

*. Reset Device
 Format: Reset<LF><CR>
 Host uses this command to Soft Reset the device.

*. Restore Factory Default
Format: RESTOREDEF<LF><CR>
That command will reset the device’s mode and all related parameters to its factory default (Refer

to table for the default values in First page), note that these parameters becomes current settings, to make it
to become “STORE” setting, user must use “STORE” command to save the current setting to NV memory.

*. Store All settings to NV memory
Format: STORE<LF><CR>
This command will store the current settings in volatile memory to Non-Volatile memory.

 *. Device Information
 Format: DEVICEINFO<LF><CR>
 Example: DEVICEINFO<LF><CR>
 Device will return the Device Type, Firmware version, Serial Number…etc. in ONE line (only
one <CR><LF>).

 For SLC-MA04/CA04-MU Module, there’s one more command:

*. Set Fan PWM Ratio
 Format: FanPWM PWMLevel<LF><CR>
 Example: FanPWM 5<LF><CR>
 PWMLevel is a number from 0 – 10 which means ratio of 0%(Full Off) to 100%(Full On), In the
example above, it sets the PWM ratio to 50%.

Using DLL APIs in NI LabVIEW

As the USB LED Driver is designed as a HID device, and the SDK(DLL files) provides full sets of APIs for
controlling the device. For LabView users, it’s recommended to use CLF nodes to call those APIs. The CLF node can
be added by right click the “Block Diagram” of a VI, select the “Connectivity|Library&Executables|Call Library
Function Node”.

With this CLF node, user can link it with a “.DLL” file and a particular export function of this DLL file,

In addition, user should set it’s return type and arguments correctly, for the return type and arguments information,
please refer to the above description of each API.

 Except for the MTUSB_LEDDriverInitDevices(), MTUSB_LEDDriverOpenDevice(int DeviceIndex) and
MTUSB_LEDDriverCloseDevice(int DevHandle) functions, it’s recommended to use the
MTUSB_LEDDriverSendCommand(int Dev Handle, char* Command) function to control the LED Driver, Note
that user should construct the command string (ASCII string) and then invoke this function. For the command string,
please refer to the above command set description.

The “LEDDriver_LVExample.vi” included in the CDROM show the way to use the CLF nodes to
construct a LabView applications, user might use it as a start point for his own applications.

