SDK Files:

\Library directory

LE_Colorimetry.dll

- dll file used by MT_UCISP_SDK.dll

LinearCameraUsbLib.dll

- dll file used by MT_UCISP_SDK.dll
BUF_USBCCDCamera_SDK.dll

- dll file used by MT_UCISP_SDK.dll
BufferCameraUsbLib.dll

- dll file used by MT_UCISP_SDK.dll
MT_CCDDevice_Int.dll

- dll file used by MT_UCISP_SDK.dll
MT_UCISP_SDK.dll

-DLL file export functios
MT_UCISP_SDK.lib

-Import lib file for VC++ development

MT_UCISP_SDK.h
-Header files for data prototypes and dll export functions.
\Documents directory

\Examples Directory

\Delphi

- Example in Delphi

\VC++

-Example in VC++ 6.0.
Header Files:
The “MT_UCISP_SDK.h” is as following:
typedef int SDK_RETURN_CODE;

typedef unsigned int DEV_HANDLE;

#ifdef SDK_EXPORTS

#define SDK_API extern "C" __declspec(dllexport) SDK_RETURN_CODE _cdecl

#define SDK_HANDLE_API extern "C" __declspec(dllexport) DEV_HANDLE _cdecl

#define SDK_POINTER_API extern "C" __declspec(dllexport) unsigned char * _cdecl

#else

#define SDK_API extern "C" __declspec(dllimport) SDK_RETURN_CODE _cdecl

#define SDK_HANDLE_API extern "C" __declspec(dllimport) DEV_HANDLE _cdecl

#define SDK_POINTER_API extern "C" __declspec(dllimport) unsigned char *_cdecl

#endif

typedef struct

{

 int CameraID;

 int TotalPixelCnt;

 int AvgFrameCnt;

 int ExposureTime;

 int TotalGain;

 int TimeStamp;

 int OpticalBlack;

 int FrameTime;

 int SliceNum;

}TSpectrumDataProperty;

typedef void(*SpectrometerFrameCallback)(TSpectrumDataProperty *Property, double **FloatPtr);

SDK_API MTUCISP_InitDevice(void);

SDK_API MTUCISP_AddDeviceToWorkingSet(int DeviceID);

SDK_API MTUCISP_RemoveDeviceFromWorkingSet(int DeviceID);

SDK_API MTUCISP_InstallSpectrometerFrameHooker(int DeviceID,SpectrometerFrameCallback HookerProc);

SDK_API MTUCISP_StartDeviceEngine(void);

SDK_API MTUCISP_StartFrameGrab(int GrabType);

SDK_API MTUCISP_StopFrameGrab(void);

SDK_API MTUCISP_StopDeviceEngine(void);

SDK_API MTUCISP_UnInitDevice(void);

SDK_API MTUCISP_GetDeviceModuleNoSerialNo(int DeviceId, char *ModuleNo, char *SerialNo);

SDK_API MTUCISP_GetDeviceCCDSize(int DeviceID,int *CCDSize);

SDK_API MTUCISP_GetDeviceSpectrometerNum(int DeviceID);

SDK_API MTUCISP_SetDeviceWorkMode(int DeviceID,int WorkMode);

SDK_API MTUCISP_SetDeviceExposureTime(int DeviceID,int ExpTime);

SDK_API MTUCISP_SetDeviceCCDTotalGain(int DeviceID,int Gain);

SDK_API MTUCISP_SetDeviceCCDOpticBlack(int DeviceId,int OBValue);

SDK_API MTUCISP_SetDeviceAverageFrameNum(int DdeviceID,int AvgFrameNum);

SDK_API MTUCISP_GetDeviceSpectrometerETCStatus(int DeviceID,int SpectroID);

SDK_API MTUCISP_SetDeviceSpectrometerETCStatus(int DeviceID,int SpectroID,int Flag);

SDK_API MTUCISP_GetDeviceSpectrometerDisplayData(int DeviceID,int SpectroID, int WaitFlag, double* &Data);

SDK_API MTUCISP_SetDeviceSpectrometerDarkData(int DeviceID,int SpectroID,double *Darkata);

SDK_API MTUCISP_SetDeviceSpectrometerRefData(int DeviceID,int SpectroID,double *RefData);

SDK_API MTUCISP_GetDeviceSpectrometerWavValue(int DeviceID,int SpectroID,int PixelNo);

SDK_API MTUCISP_GetDeviceSpectrometerSpectrum(int DeviceID,int SpectroID,double *Input,double *Output);

SDK_API MTUCISP_GetDeviceSpectrometerCIE1931Coords(int DeviceID,int spectroID,double *Input, double &x, double &y);

SDK_API MTUCISP_GetDeviceSpectrometerCIE1976Coords(int DeviceID,int spectroID,double *Input, double &up, double &vp);

SDK_API MTUCISP_GetDeviceSpectrometerCCT(int DeviceID,int spectroID,double *Intput, int &CCT);

SDK_API MTUCISP_GetDeviceSpectrometerCRIs(int DeviceID,int SpectroID, double *Input, double *CRIs);
Notes: Please check header file for latest information, we may add functions.
Export Functions:
SDK_API MTUCISP_InitDevice(void);
This is first function user should invoke for his own application, this function communicates with the installed device driver and reserve resources for all further operations.

Arguments: None

Return: The number of Mightex Buffer CCD cameras (e.g. CCN/CCE/CGN/CGE/CXN/CXE…etc.) currently attached to the USB 2.0 Bus, if there’s no Mightex CCD USB camera attached, the return value is 0.

Note: There’s NO device handle needed for calling further SDK APIs, after invoking MTUCISP_InitDevice,,camera engine reserves resources for all the attached cameras. For example, if the returned value is 2, which means there TWO cameras currently presented on USB bus, user may use “1” or “2” as DeviceID(index) to call further device related functions, “1” means the first device and “2” is the second device (Note it’s ONE based).

For properly operating the cameras, usually the application should have the following sequence for device initialization and opening:

MTUCISP_InitDevice(); // Get the devices

MTUCISP_AddDeviceToWorkingSet (deviceID); // Adding cameras to “working set”.
MTUCISP_StartDeviceEngine;
…… Operations ……

// including BUFCCDUSB_ActiveDeviceInWorkingSet()
When application terminates, it usually does:

MTUCISP_StopDeviceEngine();
MTUCISP_UnInitDevice ()
Note that users don’t need to explicitly open and close the opened device, as MTUCISP_InitDevice() will actually open all the current attached cameras and reserve resources for them, however, by default, all of them are inactive, user needs to set them as active by invoking MTUCISP_AddDeviceToWorkingSet(deviceID).
SDK_API MTUCISP_UnInitDevice(void);

This is the function to release all the resources reserved by MTUCISP_InitDevice(), user should invoke it before application terminates.
Arguments: None

Return: Always return 0.

SDK_API MTUCISP_GetDeviceModuleNoSerialNo(int DeviceId, char *ModuleNo, char *SerialNo);

For any present device, user might get its Module Number and Serial Number by invoking this function.

Argument: DeviceID – the index (ONE based) of the device, Please refer to the notes of MTUCISP_InitDevice() function for it.

ModuleNo – the pointer to a character buffer, the buffer should be available for at least 16 characters.

SerialNo – the pointer to a character buffer, the buffer should be available for at least 16 characters.

Return: -1 If the function fails (e.g. invalid device ID)

-2 If the Camera engine is started already.

1 if the call succeeds.

Important: Usually, user might use this API to get Module/Serial No of a camera after invoking MTUCISP_InitDevice(), but Must before the camera engine is started.
SDK_API MTUCISP_AddDeviceToWorkingSet(int DeviceID);
For a present device, user might add it to current “Working Set” of the camera engine, and the camera becomes active. Argument: DeviceID – the index (ONE based) of the device, Please refer to the notes of MTUCISP_InitDevice() function for it.

Return: -1 If the function fails (e.g. invalid device number)

1 if the call succedds.

Note: This API should be only invoked before the camera engine is started.

SDK_API MTUCISP_RemoveDeviceFromWorkingSet(int deviceID);
User might remove the camera from the current “Working Set”, after invoking this function, the camera become inactive.

Argument: DeviceID – the index (ONE based) of the device, Please refer to the notes of MTUCISP_InitDevice() function for it.

Return: -1 If the function fails (e.g. invalid device number)

1 if the call succedds.

Note: This API should be only invoked before the camera engine is started.
SDK_API MTUCISP_GetDeviceSpectrometerNum(int DeviceID);

After calibrated, each Mightex imaging spectrometer have been defined with multiple spectrometers on one CCD device. The API allows user to view the spectrometer number that has been set.
Argument: DeviceID – the index (one based) of the device, please refer to the notes of MTUCISP_InitDevice() function for it.

Return: -1 - If the function fails

 0 – If no spectrometer found on or defined for this ISP device.

n – The spectrometer Number of the ISP device.

Notes: After Device is added to the working group, camera engine will allocate and reserve all the resources for each spectrometer. The access specific spectrometer of the device, user only need to provide the spectrometer index, SpectroID, which is one based. E.g, if 6 spectrometers are defined for the ISP device, user can set SpectroID to 1 to access the first spectrometer, set SpectroID to 2 to access the second spectrometer, set SpectroID to 6 to access the Sixth spectrometer in API functions that is related to spectrometer operation (those took SpectroID as parameter).
SDK_API MTUCISP_SetDeviceExposureTime(int DeviceID,int ExpTime);
User may invoke this function to set the exposure time, in us(MicroSecond).
Argument: DeviceID – the index(One based) of the device, Please refer to the notes of MTUCISP_InitDevice() function for it.

ExpTime – the exposure time to be sent of the device. The unit is microsecond.

(Note: Each ISP device has a minimum exposure time parameter which is the minimum allowable exposure time and also the step for the device. Please refer to the user manual for this parameter. E.g, if Minimum exposure time is 50us, The ExpTime to be set should be in scale of 50us, such as 50us, 100us, 150us, etc. If smaller than 50us is sent to the device number, the device will automatically set it to 50us. And if the sent ExpTime is not in 50us scale, the device will automatically adjust the real exposure time in 50us scale).
Return: -1 – if the function fails.

 Nnn – The exposure time that is adopted for the frame grabbing.
SDK_API MTUCISP_SetDeviceCCDOpticBlack(int DeviceId,int OBValue);
User may invoke this function to set the CCD’s optical black.
Argument: DeviceID – the index(One based) of the device, Please refer to the notes of MTUCISP_InitDevice() function for it.
OBValue – the optical black value to be set.
Return: -1 – If function fails.

1 – if function succeeds.
SDK_API MTUCISP_SetDeviceAverageFrameNum(int DeviceID,int AvgFrameNum);

User may use this function to set the average frame number. If AvgFrameNum > 1, the device will grab AvgFrameNum frames, and aggregate and average these frames. Then the actual frame data user obtained is the averaged data. If AveFrameNum <= 0, then the device will set it internal AvgFrameNum = 1.
Arguments: DeviceID – the index (One based) of the device, Please refer to the notes of MTUCISP_InitDevice() function for it.

 AvgFrameNum – the average frame number to be set.

Return:
-1 – If function fails.

1 – if function succeeds.
Note: Please do not invoke this function while device is in grabbing action. If user want to change average frame number, user should first stop grabbing action by calling MTUCISP_StopFrameGrab().
SDK_API MTUCISP_SetDeviceCCDTotalGain(int DeviceID,int Gain);
User may set the global gain for each pixel by invoking this function.

Argument: DeviceID – the index (One based) of the device, Please refer to the notes of MTUCISP_InitDevice() function for it.

Gain - the gain value to be set in dB.

Return: -1 If the function fails (e.g. invalid device number)

1 if the call succeeds.

Important: The gain value should be from 6dB – 41dB, represents 2x – 112x of analog amplifying Multiples.
SDK_API MTUCISP_GetDeviceSpectrometerETCStatus(int DeviceID,int SpectroID);
User may invoke this function to check the linear exposure time calibration status of specific spectrometer.
Argument: DeviceID – the index (One based) of the device, Please refer to the notes of MTUCISP_InitDevice() function for it.

SpectroID – the spectrometer ID (One based) of the device, please refer to the notes of MTUCISP_GetDeviceSpectrometerNum for detail.

Return: -1 - If the function fails (e.g. invalid device number)

0 - if the ETC status of the spectrometer is off.
1 - if the ETC status of the spectrometer is on.
SDK_API MTUCISP_SetDeviceSpectrometerETCStatus(int deviceID,int SpectroID,int Flag);

User may invoke this function to check the linear exposure time calibration status of specific spectrometer.

Argument: DeviceID – the index (One based) of the device, Please refer to the notes of MTUCISP_InitDevice() function for it.

SpectroID – the spectrometer ID (One based) of the device, please refer to the notes of MTUCISP_GetDeviceSpectrometerNum for detail.

Flag – Set Flag to 0 to turn off the ETC status, and set Flag to 1 to turn on the ETC status.
Return: -1 If the function fails (e.g. invalid device number)

1 if the call succeeds.

SDK_API MTUCISP_InstallSpectrometerFrameHooker(int deviceID, SpectrometerFrameCallback HookerProc);
Argument: FrameType – 0: Raw Data (RAW mode)
1: Processed Data. (BMP mode)
FrameHooker – Callback function installed.

Return: -1 If the function fails (e.g. invalid Frame Type).

1 if the call succeeds.

Important: The call back function will only be invoked while the frame grabbing is started, host will be notified every time the camera engine get a new frame (from any cameras in current working set).

Note:
The callback has the following prototype:

typedef void(*SpectrometerFrameCallback)(TSpectrumDataProperty *Property, double **DataPtr);
The TProcessedDataPropertys is defined as:
typedef struct

{

 int CameraID;
int SpectrometerCount;
 int TotalPixelCount;

 int ExposureTime;

 int CCDGain;

 int TimeStamp;

 int OpticalBlack;

int AverageFrameCount;
}TSpectrumDataProperty;

Arguments of Call Back function:

Property– This is an important data structure which contains information of this particular frame, camera firmware fill this data structure while camera finishes the grabbing of a frame, with the real time parameters used for this frame. It has the following elements:
CameraID – This is the camera number (the same as the deviceID used in all the APIs), as camera engine might get frames from more than one cameras (there might be multiple cameras in current working set), this identifies which camera in working set generates the frame.

SpectrometerCount – The total spectrometer number has been defined of this camera.

TotalPixelCount – The maximum pixel number of one spectrometer.
ExposureTime – The exposure time camera was used for generating this frame, unit in us.

CCDGain – Global gain for this frame, might be from 6 to 41. (refer to the above “MTUCISP_ SetDeviceCCDTotalGain” API)

TimeStamp – Camera firmware will mark each frame with a time stamp, this is a number from 0 – 65535 ms(and it’s automatically round back) which is generated by the internal timer of the firmware, the unit of it is 1ms. For example, if one Frame’s time stamp is 100 and the next frame’s stamp is 120, the time interval between them is 200x100us = 20ms.

 OpticalBlack – The optical black value of this frame. See MTUCISP_SetDeviceCCDOpticBlack for detail.

 AverageFrameCount – The camera allows user to filter the noise out by aggregating averageFrameCount frames to obtain one frame. This the average frame number used to get this frame. See MTUCISP_SetDeviceAverageFrameNum for detail.
DataPtr – The pointer to the memory buffer which holds the frame data.
SDK_API MTUCISP_StartDeviceEngine(void);
There’s a multiple threads camera engine, which is responsible for all the frame grabbing, internal queue managements, raw data processing…functions. User MUST start this engine for all the following camera related operations

Argument: None.
Return: -1 If the function fails (e.g. invalid device handle)

1 if the call succedds.

Important: It’s NOT allowed to Add Camera to WorkingSet OR Remove Camera from “Working Set” while the camera engine has started already.. we expect user to arrange camera working set properly and then start the camera engine.
SDK_API MTUCISP_StopDeviceEngine(void);

This function stops the started camera engine.

Argument: None.

Return: it always returns 1.

SDK_API MTUCISP_SetDeviceWorkMode(int deviceID,int WorkMode);
By default, the Camera is working in “NORMAL” mode in which camera deliver frames to Host continuously, however, in some applications, user may set it to “TRIGGER” Mode, in which the camera is waiting for an external trigger signal and capture ONE frame for each trigger signal.

Argument: DeviceID – the device number which identifies the camera.

WorkMode – 0: NORMAL Mode, 1: TRIGGER Mode.

Return: -1 If the function fails (e.g. invalid device number)

1 if the call succeeds.

Important:

NORMAL mode and TRIGGER mode have the same features, but:

NORMAL mode – Camera will always grab frame as long as there’s available memory for a new frame, For example, when host (in most cases, it’s a PC) is keeping to get frame from the camera, the camera is continuously grabbing frames from CMOS sensor.

TRIGGER mode – Camera will only grab a frame from CMOS sensor while there’s an external trigger asserted (and there’s available memory for a new frame).

Note: While FrameCallBack is installed, the callback function is invoked for each frame grabbed by the camera engine, so basically, there’s no big difference for high level applications for these two modes.
Note: On important side effect of mode setting is that camera will clean the on-camera frame buffer, user might use this API to set camera to NORMAL mode even when the camera was in NORMAL mode, the camera will still be in NORMAL mode but all the on-camera frame buffer are cleaned.

User might use this function in some scenarios, as on-camera frame buffer is a problem when user wants to get a “fresh” frame, in these applications, user might do:

MTUCISP_SetDeviceWorkMode(); // this clear all the frames in buffer.

MTUCISP_StartFrameGrab(); // Get frames, but it should be a “fresh” frame, not a frame in buffer.

SDK_API MTUCISP_StartFrameGrab(int GrabType);

SDK_API MTUCISP_StopFrameGrab(void);
When camera engine is started, the engine prepares all the resources, but it does NOT start the frame grabbing until MTUCISP_StartFrameGrab() function is invoked. After it’s successfully invoked, camera engine starts to grab frames from cameras in current “Working Set”. User may call MTUCISP_StopFrameGrab() to stop the engine from grabbing frames from camera.

Argument: GrabType – This is for MTUCISP_StartFrameGrab() only, and this variable has only two possible values, 1 or 0x8888, which defines the different grabbing action. If user set this number to 1 allows user to grab only 1 frame, and the camera engine will automatically stop after grabbing, if user doesn’t want it to be stopped, set this number to 0x8888, this means the camera engine will always grab available frame from camera until user calls MTUCISP_StopFrameGrab().
Return: -1 If the function fails (e.g. invalid device number or if the engine is NOT started yet).
1 if the call succedds.

SDK_API MTUCISP_GetDeviceSpectrometerDisplayData(int DeviceID,int SpectroID, int WaitFlag, double* &Data);
SDK_API MTUCISP_SetDeviceSpectrometerDarkData(int DeviceID,int SpectroID, double *Darkata);
SDK_API MTUCISP_SetDeviceSpectrometerRefData(int DeviceID,int SpectroID, double *RefData);
SDK_API MTUCISP_GetDeviceSpectrometerWavValue(int DeviceID, int SpectroID, int PixelNo);
By using this function, user can get the wavelength to pixel value if ISP device has been properly calibrated with wavelength calibration..

Arguments: DeviceID – the index (One based) of the device, Please refer to the notes of MTUCISP_InitDevice() function for it.

SpectroID – the spectrometer ID (One based) of the device, please refer to the notes of MTUCISP_GetDeviceSpectrometerNum for detail.
Pixel – Pixel value returned or to be converted, it can be from 0 to 1391.

Return: -1 if function fails.(e.g. Conversion error or operator error)

 Nnnnnn – the wavelength * 1000 value returned. E.g, if the wavelength is 345.678, then returned value will be 345678.

SDK_API MTUCISP_GetDeviceSpectrometerSpectrum(int DeviceID, int SpectroID, double *Input, double *Output);
SDK_API MTUCISP_GetDeviceSpectrometerCIE1931Coords(int DeviceID, int spectroID, double *Input, double &x, double &y);
SDK_API MTUCISP_GetDeviceSpectrometerCIE1976Coords(int DeviceID, int spectroID, double *Input, double &up, double &vp);
User may call these two functions to get the CIE colorimetry coordinates .

Argument: DeviceID – the index (One based) of the device, Please refer to the notes of MTUCISP_InitDevice() function for it.
SpectroID – the spectrometer ID (One based) of the device, please refer to the notes of MTUCISP_GetDeviceSpectrometerNum for detail.
Input – the pointer to the acquired data that is to be sent to ISP device for calculation of CIE coordination.
x - CIE 1931 x coordinate * 104; **
 y - CIE 1931 y coordinate *104;

 up - CIE 1976 u’ coordinate *104;

 vp - CIE 1976 v’ coordinate *104.
Return: always 0.
(Note: ** if calculated x = 0.3123, then the return value in x will be 3123.)
SDK_API MTUCISP_GetDeviceSpectrometerCCT(int DeviceID,int spectroID,double *Intput, int &CCT);
User may call this function to get the CIE CCT.

Argument: DeviceID – the index (One based) of the device, Please refer to the notes of MTUCISP_InitDevice() function for it.
SpectroID – the spectrometer ID (One based) of the device, please refer to the notes of MTUCISP_GetDeviceSpectrometerNum for detail.
Input – the pointer to the acquired data that is to be sent to ISP device for calculation of CIE coordination.

CCT – the CIE CCT value.

Return: 0.
SDK_API MTUCISP_GetDeviceSpectrometerCRIs(int DeviceID,int SpectroID, double *Input, double *CRIs);
User may call this function to get the CIE CRIs.

Argument: DeviceID – the index (One based) of the device, Please refer to the notes of MTUCISP_InitDevice() function for it.
SpectroID – the spectrometer ID (One based) of the device, please refer to the notes of MTUCISP_GetDeviceSpectrometerNum for detail.
Input – the pointer to the acquired data that is to be sent to ISP device for calculation of CIE coordination.

CRIs – to be defined.
Return:

